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Modelling pressure-assisted densification
by power-law creep
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USA

Densification of ceramic powders by power-law creep during pressure-assisted compaction

is analysed. The proposed densification model is based on two existing power-law creep

densification models: one for a relative density up to 0.9 (stage I) and the other for densities

above 0.9 (stage II). Using these two models independently in their respective density ranges

for predicting hot pressing of homogeneous alumina powder results in a discontinuity in the

densification rate time history curves as well as in the radial and hoop stress time histories in

the compact. To eliminate these discontinuities a novel method of combining the two

models into a single unified model is presented. Blending of the models is based on the

assumption that porosity changes gradually from being completely open at the beginning of

compaction to completely closed at full density. Experimental data generated by hot

pressing homogeneous alumina cylindrical compacts at two different temperatures of 1400

and 1450 °C at different pressures were used to obtain the material creep constants that were

employed in the unified model.
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1. Introduction
Pressure-assisted densification currently is a common
technology for the manufacture of powder metallurgy
and ceramic components. Therefore, it is important to
predict densification behaviour and the residual stress
generation in parts fabricated by pressure-assisted
densification. In particular, with the advent of com-
posites and functionally gradient materials, one needs
to be able to predict densification and stress behaviour
in systems with gradients in properties such as initial
density and composition.
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Two recent models for predicting pressure-assisted
densification have been developed by Kuhn and
McMeeking [1] and by Sofronis and McMeeking [2].
These models are based on power-law creep that is
believed to be the predominant densification process
in hot pressing and hot isostatic pressing (HIP) of
ceramic materials. The first model by Kuhn and
McMeeking [1] applies to low relative densities
(D(0.9). This density region is typically referred to
as stage I. The second model by Sofronis and
McMeeking [2] was developed for the higher-relative-
density region (D'0.9), known as stage II.

Predictions by the above models [1, 2] have been
compared with experimental data by several investi-
gators. In the case of HIP homogeneous compacts the
stage I model reduces to an earlier model proposed by
Ashby [3] which was used to predict the densification
of low-carbon steel and alumina powders. The predic-
tions used independently determined creep constants
from the literature for the respective powders. Good
agreement between the data and the predictions was
reported. The stage I model was also used to predict
uniaxial compression of alumina powders [1]. The
predictions were compared with data obtained using
pre-sintered specimens that were pressed under differ-
ent pressures. The model’s constants were adjusted
such that the predicted axial strain rate matched the
data at a relative density of 0.8. The model was then
used to predict strain rates at different densities in the
range 0.65(D(0.9. Good agreement was obtained
between the predictions and the data. A model similar
to the stage II model [2] was used to predict the final
part shape of hot isostatically pressed nickel-based
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superalloy (Astroloy) powders [4]. The part shape
predictions were based on creep constants from
uniaxial creep compression and HIP densification
tests. The predicted final shape of the parts compared
well with the experiments. Liu et al. [5] also used
the stage II model to predict densification by HIP,
hot pressing and uniaxial compression of a porous
intermetallic alloy (Ti—14 wt% Al—21 wt% Nb).
The creep constants for these predictions were ob-
tained from compression creep tests of the fully dense
alloy. These predictions also fit the experimental data
well. It should be noted that the above-discussed pre-
dictions were compared with data at either low or
high relative densities (stage I or stage II). None of
these predictions spanned the entire densification
range from the initial low density to the final high
density.

In order to predict the densification history from
initial low density at the beginning of compaction to
the final, almost full density at the end of compaction,
a method is needed to bridge the two existing densifi-
cation models. This need is especially important in
those cases where significant density gradients
develop in the compact. In such cases, creep and
densification calculations have to be made simul-
taneously for both low and high densities. Such a
situation was considered by Song et al. [6] for hot
pressing homogeneous copper powder where density
gradients developed owing to die wall friction. These
researchers blended the stage I and stage II models in
a narrow overlapping region of relative densities. By
this approach, they predicted relatively smooth
transition of density from stage I to stage II. However,
the evolution of stresses during compaction was not
considered. As will be shown, the prediction of
a smooth transition in density does not guarantee
a smooth evolution in the state of stress. This is
especially true in cases where substantial deviatoric
stresses exist during densification. To make the predic-
tions free of such discontinuities, a new method of
blending is proposed.

2. The densification models
The existing power-law creep models considered in
this paper [1, 2] have been developed on the assump-
tion that creep is the dominant mechanism for densifi-
cation. The difference between the two models results
from the assumed powder morphology differences in
the two stages. In stage I the porosity is considered to
be open and interconnected with discrete necks bridg-
ing adjacent particles. Densification is assumed to
occur by the growth and creep deformation of the
necks. In contrast, pores in stage II are considered
to be closed (hollow spheres) and isolated from
each other. Densification in this case occurs by the
shrinkage of these pores due to the creeping of the
surrounding material. These morphological perspect-
ives lead to different densification processes that are
represented mathematically in terms of creep strain
rate tensors.

The components of the creep strain rate tensor,
(E

ij
)
I
, developed by Kuhn and McMeeking [1] for
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stage I are given by (see Nomenclature for definitions)
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For stage II, Sofronis and McMeeking [2] have
derived a creep strain rate tensor, whose components
EQ
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are given by
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The constants A
1
, A
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, n
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and n
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are the power-law

creep constants for stage I and stage II, respectively. It
should be noted that A
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and A

2
can be temperature

dependent; therefore,

A
1

" A*
1

exp A!
Q

1
R¹B (10)

A
2

" A*
2

exp A!
Q

2
R¹B (11)

where Q
1

and Q
2

are the apparent activation energies
for stage I and stage II respectively.

The trace of the above strain rate tensors given by
Equations 1 and 6 result in the following differential
equation for densification rates:
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3. Implementation of the models into a
finite-element code

To predict densification and stress history during
pressure-assisted compaction of complex geometric
shapes, finite-element analysis (FEA) has to be used.
Therefore, the two densification models (Equations 1
and 6) were implemented into a FEA code ABAQUS



Figure 1 Schematic diagram of solution scheme.

(registered trademark of Hibbitt Karlsson and Soren-
sen Inc., Pawtucket, RI, USA) with a user-defined
CREEP subroutine. Accordingly, the stress tensor is
calculated by ABAQUS whereas, the creep and den-
sification strain are calculated within user-defined
subroutine. The flow chart for the computation is
shown in Fig. 1. The sequence of calculations is as
follows. First, the initial elastic stress distribution
within the powder compact is calculated for the ap-
plied load using ABAQUS. Next the stage I densifica-
tion model is called to calculate the incremental creep
deformation and densification strain and to update
the relative density. The newly calculated values are
returned to ABAQUS which recalculates the stress
tensor. This sequence is repeated for subsequent time
steps until the end of stage I. At this time the
user-defined routine is changed to stage II, and the
calculation sequence is continued until the end of the
densification period.

ABAQUS has a flexible routine to calculate the
deformation and density changes based on user-sup-
plied equations [7]. This routine was developed to
provide a generic methodology to calculate the defor-
mation and swelling (increase in density) of soils. The
routine is based on the following equation for the
strain increment in a given time step:
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where *e#3 represents the creep deformation strain
increment and *e48 represents the swelling strain in-
crement. The functional dependences of *e#3 and *e48
on stress must be provided by the user. Although the
routine was developed to account for swelling (in-
crease in density), it is also applicable for the decrease
in density. Therefore, this ABAQUS routine provides
a convenient way to implement the densification mod-
els (Equations 1 and 6). In particular it should be
noted that the functional form of Equation 14 is the
same as Equations 1 and 6 except that the strain rate
in Equation 14 is given in a discretized incremental
form. By comparing the first and second terms on the
right-hand side of Equations 1 and 6 with those of
Equation 14, one obtains the following strain in-
crements:
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Furthermore, the density increment is calculated as
follows:

D/%8"D#DQ *t (19)

where DQ is given by Equations 12 and 13.
When the user-defined subroutine is called by

ABAQUS, instantaneous values of the stress and the
relative density are passed into the subroutine, which
then calculates the incremental strains and the new
relative density by Equations (14)— (19). The variation
in elastic modulus and Poisson’s ratio with density
was derived by solving the equations for the density-
dependent bulk and shear moduli of powders [8].
Finally, the subroutine returns the newly calculated
values to ABAQUS. This process is repeated for each
Gauss (integration) point for each element of the
finite-element mesh at every time step.

4. Prediction of hot pressing
of alumina powders

To illustrate the effect of transition from one model to
the other, the prediction of hot pressing of alumina
powder compacts was performed in a rigid cylindrical
die with a rigid single-action punch. Four-node linear
axisymmetric elements were used to represent the
powder in the axisymmetric die. The punch and the
die walls were considered to be rigid surfaces. The
contact between the powder and the punch and that
between the powder and the die walls were assumed to
be frictionless. Because of the symmetry of the prob-
lem, only the top half of the cylindrical compact was
modeled. A schematic diagram of the finite-element
model is shown in Fig. 2.

The constants for the models were obtained by
fitting the predictions to experimental data. Data were
obtained for alumina powder that was hot pressed in
a cylindrical die of 25 mm diameter with pressures of
5, 10 and 20 MPa at 1400 °C and pressures of 5, 7 and
12 MPa at 1450 °C [9]. A density versus time curve
was obtained for each applied pressure. The results of
the 12 MPa at 1450 °C test was used to obtain a pre-
liminary estimate for the creep constants A

1
, A

2
, n

1
and n

2
. The low-density portion (relative density be-

low 0.9) of these data was used to obtain the constants
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Figure 2 Schematic diagram of finite-element model.

n
1

and A
1

of the stage I model (Equations 1—5), and
the high-density portion (relative density above 0.9)
was used for the constants n

2
and A

2
of the stage II

model (Equations 6—9).
The fit of the stage I and the stage II models to the

data for an applied pressure of 12 MPa at 1450 °C is
shown in Fig. 3. It is seen that the stage I model fits
well up to about 0.88 relative density but increasingly
rises with respect to the data above this value. Sim-
ilarly, the stage II model fits the data in its own density
range (above 0.9) but does not fit the data outside its
range. There is a discontinuity in the slope of the
curves at the intersection of the stage I and stage II
curves. This indicates that simple switching from
stage I to stage II model is inadequate for densifica-
tion prediction. Furthermore, discontinuities are also
exhibited by the radial and hoop stress components.
This is shown for the radial stress by the dotted curve
in Fig. 4. The reason for the stress discontinuity is
related to the fundamental differences between the two
models of densification. The open-porosity assump-
tion of the stage I model leads to an elastic behaviour
of the compact where the radial stress is only a frac-
tion of the axial compression. In contrast, the closed-
pore assumption for stage II leads to an equilibrated
fluid-like behaviour where the stress is close to hy-
drostatic, i.e., the radial and hoop stresses have similar
magnitudes to the applied axial stress.

5. Model blending
To eliminate the discontinuity in the slope of the
predicted densification curve, Song et al. [6] suggested
blending the two models as follows:
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Figure 3 Discontinuity between the stage I (——) and stage II (— —)
models (alumina powders hot pressed at 12 MPa and 1450 °C). (d),
experiment.

Figure 4 Comparison of radial stress histories obtained by blending
of the stage I and stage II models (alumina powders hot pressed at
12 MPa and 1450 °C). (2 ), no blending; (— — —), linear blending;
(——), cubic blending.

where D
1

and D
2

define the blending region. Song
et al. [6] used D

1
"0.8 and D

2
"0.9 to give a blend-

ing region of 0.1.
This method of blending was applied for the predic-

tion of densification of the alumina cylinders hot
pressed in the experimental part of this study. Al-
though the density prediction is reasonably smooth as
shown in Fig. 5, there exists a discontinuity in the
slopes of the radial and hoop stresses, as shown for the
radial stress in Fig. 4 by the broken curve. Although
this discontinuity is not as severe as that without
blending, it is unlikely that in nature the development
of stress would show sudden changes in slope. It is
more likely that the stresses would change more grad-
ually from an elastic state (stage I) to a hydrostatic
state (stage II). To be able to predict such a gradual
change it is proposed to blend the stage I and stage II
models from the onset of densification (D"D

0
) to the

end at full density (D"1.0). The physical argument
for this is that the average porosity in the compact is



Figure 5 Predicted densification behaviour of alumina powders
during hot pressing under 12 MPa at 1450 °C by linear blending
(— — —) of the stage I and stage II models. (d), experiment.

likely to shift gradually from completely open (stage I)
to completely closed (stage II) with increase in density.
Accordingly, blending was done using cubic interpola-
tion polynomials in Equation 20, namely,

w
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where D
0

and D
2

are the relative densities at the start
and the end respectively, of densification. This broad
range blending of the stage I and stage II models will
be referred to as the ‘‘unified’’ densification model.

The fit of the unified model to the densification data
for the cylindrical alumina compact at an applied
pressure of 12 MPa and a temperature of 1450 °C is
shown in Fig. 6. As seen in the figure, the model fits the
data well and does not have a discontinuity in the
slope of the density curve. The corresponding radial
stress history, shown in Fig. 4 by the solid curve, is
without discontinuities both in magnitude and in
slope. The transition is smooth from the initial elastic
state of stress to the final hydrostatic state at the end
of compaction. The unified model also predicted
a smooth evolution of the hoop stress. It should be
noted that during compaction there is no change
in the axial stress component due to the uniaxial
geometry.

In addition to the 12 MPa applied pressure case, the
unified model was also fitted to data for applied pres-
sures of 5 and 7 MPa at 1450 °C and 20 MPa at
1400 °C. The constants initially estimated from the
12 MPa, 1450 °C data were adjusted by trial and error
to minimize the least-squares error between the uni-
fied model prediction and the data simultaneously for
all the applied pressures at the two temperatures. The
resulting best fit constants are shown in Table I.

The overall good fit of the unified model to the data
for the applied pressures of 5, 7 and 12 MPa at
1450 °C are shown in Fig. 7. Using the constants
shown in Table I, densification predictions were made
Figure 6 Predicted densification behaviour of alumina powders
during hot pressing under 12 MPa at 1450 °C by the unified model
(— — —). (d), experiment.

TABLE I Creep constants for the unified model

A*
1

4.6]103 MPa~2 s~1

A*
2

1.52 MPa~2 s~1

n
1

2
n
2

1
Q

1
300 kJmol~1

Q
2

171 kJmol~1

Figure 7 Comparison between predictions of unified model (——)
with experimental data for different applied pressures ((d), 5 MPa;
(m), 7 MPa; (j), 12 MPa) at 1450 °C.

for applied pressures of 5 and 10 MPa at 1400 °C. It
should be noted that the 5 and 10 MPa data at
1400 °C were not used to obtain the model constants.
The good fit between the predictions and the data is
shown in Fig. 8. Furthermore, the radial and hoop
stresses for all pressures were found to be free of
discontinuities.

6. Discussion
Uniaxial hot pressing is a densification process in
which the state of stress varies from essentially elastic
6187



Figure 8 Comparison between predictions of unified model (——)
with experimental data for different applied pressures ((d), 5 MPa;
(m), 10 MPa; (j), 20 MPa) at 1400 °C.

at the beginning to hydrostatic at the end of compac-
tion. The radial and hoop stresses in uniaxial hot
pressing are caused by constrained lateral expansion,
and they depend on the powder compact’s Poisson’s
ratio and elastic modulus. For the alumina powder
considered in this research these lateral stresses ini-
tially amount to 20—25% of the applied axial stress.
Another way of stating this is that the stress tensor of
an uniaxially loaded elastic body has significant devi-
atoric stress components. It is expected that the lateral
stresses will equilibrate with the axial stress because of
creep-induced stress relaxation as densification pro-
gresses. The state of stress will eventually become
hydrostatic and the stress tensor will lose its deviatoric
component. The rate of stress relaxation depends on
the rate of densification and the concurrent creep.

The densification models discussed in this paper
predict stress evolution differently from each other. As
can be seen in Fig. 4 by the dotted cure, the stage I
model predicts a rather slow change in the radial
stress from the initial elastic value towards the applied
axial stress. Specifically, at the end of applicability of
the stage I model (D"0.9) the radial stress changed
only a few per cent from its initial value. Similarly, the
stage II model also predicts a relatively slow change in
the lateral stresses with time (Fig. 4), but according to
the prediction the magnitude of the lateral stresses is
close to the applied axial stress throughout the stage II
applicability range (D"0.9—1.0). This result in a large
difference between the radial stress predictions by the
stage I and stage II models, and hence the apparent
discontinuity at D"0.9.

It is believed that the problem lies not with the
models but with the assumption that the powder com-
pact’s porosity is either entirely open or entirely
closed, as would be required by separately using the
models in their respective relative density ranges.
A more likely situation is that both open and closed
pores exist simultaneously in the compact and only
their relative number changes with respect to each
other. The compact may start out with 100% open
porosity but, as the density increases, the smaller
6188
pores would begin to close up and the larger pores
remain open for a longer period. The successive clos-
ing of pores would lead to a gradual shift from a com-
pletely open to a completely closed porosity. This is
the situation that is represented by the unified model.
In this model the mechanism of densification as postu-
lated by Kuhn and McMeeking [1] and Sofronis and
McMeeking [2] is unaltered; only the assumption
regarding the character of porosity is changed.

There are no experimental data available at this
time on the relative ratio of open to closed pores as
a function of density during hot pressing. Therefore,
the proposed blending model, i.e., the cubic interpola-
tion between stage I and stage II, is only a first attempt
to represent properly the change in porosity with
density. As detailed porosity data become available,
the method of blending can be refined.

Direct observation of the state of stress during hot
pressing is not possible. Therefore, comparison be-
tween the predicted and actual stresses can only be
made in terms of the residual stresses that remain in
the compact after densification. Validation of the pro-
posed unified model must be done with experiments
that lead to significant deviatoric stresses, and hence
significant level of residual stresses, at the end of
compaction. A likely candidate for such experiments is
hot pressing compacts with initial gradients in their
properties, such as green density or composition.

The question may arise why should one worry
about the prediction of stress if the density can already
be predicted correctly with the existing densification
models. In response, it should be pointed out that
previous models predict density correctly only in cases
when no significant deviatoric stresses develop during
densification, such as HIP. This is because these are
the only cases where the prediction does not result in
stress discontinuity. If the stress prediction is wrong it
is reasonable to assume that the density prediction is
also in error since densification is driven by stress.
Therefore, the previous models cannot be used to
predict densification and stress evolution in cases such
as HIP or hot pressing with green density or temper-
ature gradients, die wall friction, and other heterogen-
eities in the compact. For these cases the unified model
is believed to be the appropriate model to use.

7. Conclusions
Discontinuity in the densification rate and stress state
was discovered when predicting hot pressing of cylin-
drical compacts with existing power-law creep densifi-
cation models. Blending of the existing models was
used to develop a new densification model which was
able to predict densification and stress evolution with-
out a discontinuity. The material constants used in
this new unified model were obtained by fitting the
model to experimental data, for homogeneous
alumina powders hot pressed at 1400 and 1450 °C
with different pressures. The unified model fit the data
well and exhibited a smooth increase in density and
a smooth transition of the radial and hoop stresses
from a nearly elastic to a hydrostatic state. Future
research will involve prediction of densification



behaviour and the development of residual stresses
during hot pressing of compacts with property gradi-
ents such as initial green density and composition.
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